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Motivation

e Logistic regression with predictor variables (or covariates) is
used in a wide variety of applications.

e Such as: biostatistics, ecological, genomics, finance, etc.

e For example, in medical studies:

> response variables are usually recorded as binary
outcomes (e.g., does a patient have diabetes); and

» predictor variables are often recorded characteristics, attributes
or measurements taken on patients (e.g., age or the recorded
body mass index values of each patients).



Motivation cont. ..

e When observed predictor variables are measured with error
— i.e., measured imprecisely, then there may be:

> a loss of statistical power;
> bias in parameters estimates; and

» |oss of features.

> So the analysis can lead to poor inference.



Motivation cont. ..

e Many measurement error models have been developed to
account for error-in-predictor variables (Carroll et al., 2006).

e For logistic regression, most of the literature has been
primarily developed for parametric linear structures, and less
so for quadratic structures.

e Existing methods that can incorporate quadratic models (e.g.,
regression calibration or SIMEX) usually make the assumption
that the distribution of true predictors is normal.



Motivation cont. ..

e In practice however, this assumption can be quite restrictive.

e Assuming normality on true predictors when in fact they are
non-normal can lead to inconsistent parameter estimates.

e For example (see next slide).



Example: Body mass index data of diabetics in Taiwan

(a) qg—plot for body mass index
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(b) histogram of body mass index
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Aims

e Our

aims are to develop new logistic regression models that:

take into account error-in-variables in predictors;
allow for quadratic models to be fit;

make less restrictive (or no) assumptions on the true predictor,
hence leading to consistent estimation; and

are more computationally efficient compared to other methods.



Notation

e Fori=1,...,n, let Y; be a random sample of independent
binary response variables.

e lLet Z; be categorical and X; be a continuous covariate, write
P(Y; =1|Z;,X;) = H(ex + a2Z; + B1X; + foX?)

where H(u) = {1 + exp(—u)}~1 is the logistic function.

e The MLE of 8 = (a1, az, 51, B2) is the root of the following
score function:

n n
G(0)=>_5(0,Yi,Z,X) => (Z",X"){Yi— H(6,X,Z)}.
i=1 i=1



Classical measurement error and naive method

e Now, suppose that X; is measured with additive random error
and we only have the observed surrogate variable W;.

e We assume that W; = X; + ¢; for all i, where ¢; ~ N(0,0?) is
the measurement error independent of X;, Z; and Y.

e If 02 > 0, the niive method replaces X; by W; and solves

Gn() = Z S(8,Y:, Zi, W;) = 0. (1)
i=1

Generally, E{Gp(0)} # 0, which result in biased 6.



Regression Calibration (RC)

e Regression calibration (RC) is a convenient approximation method
commonly used to adjust for bias.

e Briefly, the RC method replaces W; and W? by the following Best
linear Unbiased Estimators: E(X; | W;) and E(X? | W;) in the
estimating equation (1), respectively.

o If X; ~ N(uyx,02), the above conditional expectations can be easily
calculated

e However, the RC may yield a considerable amount of bias when
either 02 or 3 are moderately large.



Refined Regression Calibration (RRC)

e The bias can be reduced by refining the approximation
for E{H(O,X,',Z,') | Z,', VV,}

e Known as refined regression calibration (RRC).

e Specifically, we apply a simple logit-to-normal approximation,
and we can show that
E{H(0,X,Z) | Z,W;} = E{®(caZ +cB'X)|Z, W}
gyl _aZit BTE(X; | Z;, W;)
V14 c2Var(BTX; | Z:, W;)

%

where ¢ = 1/1.7 is a constant, see Johnson et al. (1995).



Refined Regression Calibration cont. . .

e Again assuming that X; ~ N(ux,c2), and with some algebra
we can find E(X; | Z;, W;) and Var(8TX; | Z;, W;).

e We let

5.(0)— | _0Zit BTE(G | 2, W)
’ V1+ 2Var(BTX; | Zj, W) |’

and estimate 6 by solving the usual estimating equation.

e But, both RC and RRC need normality assumptions on X;.



Weighted Corrected Score (WCS)

e So, can we avoid making normality assumption on X; but still
obtain consistent and asymptotically normal estimators?

e An alternative approach is to seek out a “correctable”
weighted score function.

e Thatis, for i =1,...,n, let w; be weights so that
Sw(07 \/I'a ZI'7XI') — (JJ,’S(O, \/HZHXI')

is an unbiased estimating equation.



Weighted Corrected Score cont. ..

e Recently, Chen et al. (2015) showed that there exists
a S3(0,Y;, Zj, W;), such that

E{S:;(Oa \/hZi; VVI) | ZiaXi} = Sw(07 \/ia Zi7Xi)

yields consistent and asymptotically normal estimators.
e Chen et al. (2015) only considered linear logistic regression.

e We develop similar estimators (or weighted score functions)
but specifically for quadratic models.



Weighted Corrected Score cont. ..

¢ Required condition: Provided that |3202| < 1 holds, then
we can show the existence of 5.

o We refer to this as a weighted corrected score (WCS) function:

i=1

where ¥ = (S*],S%,,S!3)"; the first component is a 2 x 1

vector (due to Z;) and the latter two are both scalars.

e These weights were trickier to calculate (see next slide), but
we now have estimators that are consistent and asymptotically
normal, and allow for quadratic structures.



Weighted Corrected Score cont. . .
. For j =1,2, we define D; = 1+ (—1) 3,02 and

1 18w, 18202
Ci(0,Y;,Zi,W;) =expl (—1Y —aZ; + (—1) = — — = .
(8,7, Z;, W;) P{( )2 b= )J2 5, s D

« The three components of S are given as follows:

. YiCl(6, Y, Zi, W) (Vi — 1)Ga(8, Vi, Zi, W
S51(0,Y1, 2, W) = z,-{ G it D, )z(D, j ,)}’
v Pl Vv P2
2
S* (0, Y, Zi, W) Wi B Ly e, vizi, W)
29, Ty £, i = i“1 s Vis &y i
w. 1 1 I \/D7f 2\/51 I ! 1 1
2
W B L 6, vz wh
RN 2 Vi Ziy Wh),
W2+ B Wo? + 18300 o2
Sia(0,Yi,Zi W) = M— = 0 YiGi(68, Y5, Zi, W)
Dl V Dl

N { W2 — gy Wio? + Lot o?

D3 Vo3

} (Y; —1)&(8, i, Z;, W;).



Simulations: Finite sample performance

e We considered two scenarios where the true distribution for X was
set to the following: (1) X ~ N(0,1); and (2) X ~ (x3 — 3)/V6;

e We simulated measurement error € ~ N(0,02) to get W = X +e.

e For both scenarios above we set: 02 = 0.30, n = 200, 1000 and true
parameter values: 8 = (0.50, 1, —0.30).

e We then generated Y and fit the naive model and four logistic
regression (measurement error) models for each scenario.



Simulation scenario 1: X ~ N(0,1)

e For further comparison, we also included another consistent method

called the extensively corrected score (ECS, Huang et al., 2015).

scenario 1 B =1 B2 = —0.30
method | Mean 5D SE___RMSE __CP | Mean _SD___SE _ RMSE _ CP
n3ive 073 016 016 065 057 | 015 011 01l 078 069
RC 095 021 021 080 092 | -0.26 020 018 088 0.2
RRC 104 026 026 08 095 | -0.32 026 023 093 096
ECS 112 040 042 099 096 | -0.38 048 040 107 096
wCs 112 033 020 096 093 | 041 036 030 105 091

Table: Estimates, RMSE and 95% coverage (CP) for n = 200.

scenario 1 pB1=1 B2 = —0.30
method | Mean 5D SE___RMSE __CP | Mean 5D SE _ RMSE _ CP
n3ive 073 007 007 063 003 | 015 005 005 077 01l
RC 0.94 009 009 077 090 | 025 008 008 085  0.89
RRC 101 011 011 08 095 | 030 010 010 08 095
ECS 105 015 015 08 096 | -0.33 013 013 091 007
wCes 104 013 012 084 094 | 033 012 011 091 093

Table: Estimates, RMSE and 95% coverage (CP) for n = 1000.



Simulation scenario

scenario 2 B =1 B2 = —0.30
method Mean SD SE RMSE CP Mean SD SE RMSE CP
naive 0.58 0.18 0.17 0.59 0.27 -0.11 0.11 0.09 0.75 0.38
RC 0.76 0.24 0.22 0.69 0.77 -0.19 0.20 0.15 0.82 0.87
RRC 0.80 0.28 0.26 0.73 0.80 -0.21 0.25 0.18 0.84 0.91
ECS 1.11 0.60 0.54 1.05 0.95 -0.35 0.35 0.32 0.96 0.97
WCS 1.15 0.47 0.39 1.02 0.92 -0.39 0.37 0.25 1.01 0.93

Table: Estimates, RMSE and 95% coverage (CP) for n = 200.

scenario 2 B1=1 B2 = —0.30
method Mean SD SE RMSE CP Mean SD SE RMSE CP
naive 0.56 0.07 0.07 0.56 0.00 -0.13 0.03 0.03 0.75 0.00
RC 0.73 0.10 0.10 0.64 0.19 -0.21 0.06 0.06 0.82 0.62
RRC 0.75 0.11 0.11 0.65 0.36 -0.22 0.06 0.06 0.82 0.75
ECS 1.03 0.20 0.19 0.84 0.96 -0.32 0.10 0.09 0.91 0.96
WCS 1.01 0.16 0.16 0.83 0.95 -0.31 0.08 0.07 0.89 0.95

Table: Estimates, RMSE and 95% coverage (CP) for n = 1000.



Case Study: Diabetes survey data

e First, we obtained an approximate value for o2 using
validation data.

e We then fitted each model using body mass index as a
covariate with quadratic terms.

method a1 b1 B2
ndive | -4.26 (1.13) 0.18 (0.08) -0.00271 (0.00167)
RC | -5.02(1.33) 0.23(0.09) -0.00370 (0.00181)
RRC | -5.06 (1.36) 0.24 (0.10) -0.00375 (0.00185)
ECS | -4.92(1.33) 0.22(0.09) -0.00341 (0.00173)
WCS | -4.86 (1.40) 0.22 (0.10) -0.00345 (0.00194)

Table: Estimates and standard errors (in parentheses) for each method.



Conclusion and Further Work

e Two new methods (RRC and WCS) for quadratic logistic
regression models were comparable (and in some cases better)
than known methods.

e However, some additional conditions were still needed.

e We could consider quadratic Berkson (measurement) error
models.

e We could also try to extend these methods to other link
functions e.g., probit or log-linear Poisson models.
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Simulation example of bias
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Regression Calibration cont. . .

e |t follows that the conditional expectations are:
E(X; | W) = Hox; | w; and E(X,.2 | W) = o2 +M2

X,"W,' Xi‘Wi
2 2
B o  _ 2 — &= 2
Where IU’X,‘|Wi = ,sz + O’é(,(VVI /’LW)r O-Xi‘Wi = UEV O-X

and 02, = 02 + 02

o Note that i = fiy, such that p, can be estimated by W,

and since o2 is given then 02 = 02, — 02 can be similarly

estimated.



Example 2: Platypus body weight for males and females

Frequency

(a) qg—plot for female platypus body weight

(b) gqg—plot for male platypus body weight
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Case Study 2: Platypus capture—recapture data

e Here, the main interest was estimating capture probabilities
for each gender type using body weight as a covariate.

~ ~

method 1 2 [‘31 52
naive -8.58 (4.80) -0.47 (1.01) 12.32 (8.23) -5.34 (3.12)
RC | -8.79(5.60) -0.44(1.05) 12.70 (9.60) -5.53 (3.66)
RRC | -9.17 (6.19) -0.45 (1.09) 13.38 (10.63) -5.82 (4.08)
ECS | -10.77 (10.04) -0.66 (2.29) 16.38 (17.91) -7.04 (7.43)
WCS -11.87 (6.71) -0.91 (1.47) 18.22 (11.54) -7.66 (4.24)

Table: Estimates and non-parametric bootstrap standard errors (in
parentheses) for each method. Note that i here is the gender effect.
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